Java:

Learning to Program with Robots

Chapter 05: More Decision Making

Chapter Objectives

After studying this chapter, you should be able to:
e Follow a process for constructing while loops with fewer errors.
e Avoid common errors encountered with while loops.
e Use temporary variables to remember information within methods.
e Nest statements inside other statements.
e Manipulate Boolean expressions.

e Perform an action a predetermined number of times using a for
statement.

e Write if and while statements with appropriate style.

5.1.1: Common Errors with While Loops

The Fence-Post Problem
A fence with three sections requires

1 2 3
four fence posts. G @ 9 0

Picking up all the things between the
robot’s current location and the wall
requires three moves (fence sections)) ‘ ‘ ‘]

but four pickThings (fence posts).

A typical “solution” has the same

number of fence sections and posts:
while (this.frontlsClear()))
{ this.pickThing();
this.move();
}

We need one more post:
while (this.frontlsClear())
{ this.pickThing();)
this.move();
}
this.pickThing();

5.1.1: Common Errors with While Loops

Infinite Loops
When do these loops stop?

while (this.isFacingNorth()) while (this.isBesideThing())

{ this.pickThing(); { this.turnLeft();
this.move(); }

}

There must be a relationship between what occurs in the body of the
loop and what occurs in the test. What?

5.1.2: A Four-Step Process for while Loops
LR
S
AN

Step 1:

Step 2:

Step 3:

|dentify the actions that must be repeated to solve the
problem.

Identify that Boolean expression that must be true when the
while statement has completed executing. Negate It.

Assemble the while loop with the actions from Step 1 as the
body and the Boolean expression from Step 2 as the test.

Add additional actions before or after the loop to complete the
solution.

Case Study: Move Along a Wall (Step 1)

Problem: Write a method to move a robot to the end of a wall.

> >

M M
Initial Situation Final Situation
Step 1: Identify the actions that must be repeated to solve the
problem.

One approach is to list the actions that must be taken for a small
problem — without using a loop:

turn right (to check if a wall is there)] .
turn left g

move N
turn right (to check if awall is there) | ~Z/ ¢
turn left S
move .
turn right (fo check if awall is there)y J
turn left L)
move \
turn right (to check if a wall is there) [
turn left

Case Study: Move Along a Wall (Step 2)

Step 2: ldentify that Boolean expression that must be true when the
while statement has completed executing. Negate it.

The loop should stop when the robot has moved past the end of the
wall.

Negating this gives us when the loop should continue:

while (this robot has not moved past the end of the wall)

{..

}
Refining this further,

while (this robot is blocked when facing left)

{ ...
}
This implies
while (this.frontlsBlocked())...

Case Study: Move Along a Wall (Steps 3&4)

Step 3:

Assemble the while loop with the actions from Step 1 as the

body and the Boolean expression from Step 2 as the test.

Step 4.

solution.
while (this.frontlsB...)
{ this.turnRight();

this.turnRight();
while (this.frontlsB...)

Add additional actions before or after the loop to complete the

this.turnRight();
this.turnLeft();

this.turnLeft(); { this.turnLeft(); while (this.frontlsB...)
this.move(); this.move(); { this.move();

} this.turnRight(); this.turnRight();

this.turnRight(); } this.turnLeft();

this.turnLeft(); this.turnLeft(); }

turn right turn right turn right

turn left turn left turn left

move move move

turn right turn right turn right

turn left turn left turn left

move move move

turn right turn right turn right

turn left turn left turn left

move move move

turn right turn right turn right

turn left turn left turn left

But, which one is correct?

5.2: Tempoary (Local) Variables

Temporary variables
e are also called “local variables.”
e Occur inside a method.
e store a value until the end of the method.

e have a type such as Robot or int which determines what kind of
values may be stored in the variable.

e must be given an initial value.

Two examples:

int counter = 0;

typ?j/ T\initial value
nam

Robot karel = new Robot(sanDiego, 1, 2, Direction.EAST);

typej:/ NSinitial value
Nam

5.2: Using an Integer Variable

Declaring an integer variable:
int counter = 0;

Using a variable’s value:

if (counter == 0) while (counter > 0) this.myMethod(counter);
{ ... { ...
} }

Changing a variable’s value:

/\ 1. Get the variable's current value

counter = counter 2. Add 1 to it.
— 3. Put the result back into the variable

5.2.1: Counting the Things on an Intersection

Wanted:

Count things on this intersection

if (O things)

{ this.move();

}

if (1 thing)

{ this.turnLeft();
}

if (2 things)

{ this.turnRight();
}

Solution:

int numThingsHere = 0;

while (this.canPickThing())
{ this.pickThing();

numThings = numThings + 1;
}

if (numThingsHere == 0)
{ this.move();

}
if (numThingsHere == 1)
{ this.turnLeft();

}
if (numThingsHere == 2)
{ this.turnRight();

}

5.2.2: Tracing with a Temporary Variable (1/2)

Suppose the robot is on intersection (3,5), which has 2 Things.

#0n

Code test (str,ave) Dir numThingsHere intersgction

(3,50 N ?777? 2
int numThings = 0;

(3,5 N 0 2
while (this.canPickThing())

true (3,5 N 0 2

{ this.pickThing();

(3,5) N 0 1
numThingsHere = numThingsHere + 1;

(3,5) N 1 1

while (this.canPickThing())
true (3,5 N 1 1

5.2.2: Tracing with a Temporary Variable (2/2)

true (3,5 N
{ this.pickThing();
(3,5) N
numThingsHere = numThingsHere + 1;
(3,5) N
while (this.canPickThing())
false (3,5 N
if (numThingsHere == 0)
false (3,5 N
if (numThingsHere == 1)
false (3,5 N
if (numThingsHere == 2)
true (3,5 N

{ this.turnRight();
(35 E

5.2.3: Storing the Result of a Query

We could do something equivalent with the number of things in the

robot’s backpack:

One way... |{f &I}lss;g\t:;\(t)'l;'hmgsInBackpack() == 0)
i}f (this.countThingsinBackpack() == 1)
{ this.turnLeft();

?f (this.countThingsinBackpack() == 2)

{ this.turnRight();
}

Using a temporary int numThings = this.countThingsInBackpack();
variable... if (numThings == 0)

{ this.move();

}

if (numThings == 1)

{ this.turnLeft();

}

if (numThings == 2)

{ this.turnRight();

}

[** Count and return the number of things on this robot’s current intersection. Replace the
* things after counting them.

* @return the number of things on this robot’s current intersection */
O pubic int countThingsHere()
© {

uery

int numThingsHere = 0;

while (this.canPickThing())
{ this.pickThing();
numThingsHere = numThingsHere + 1,

}

this.putThing(numThingsHere);

5.2.4: Writing

return numThingsHere;

Using the query:

int numThings = this.countThingsHere();
if (numThings == 0)

{ this.move();

}
if (numThings ==1) ...

5.2.5: Using a Boolean Temporary Variable

In the case study, it would have been useful to have a predicate,
rightlsBlocked(), as we followed the wall.

>

M

This would have simplified the loop to

while (this.rightlsBlocked())
{ this.move();

}
How?
public boolean rightisBlocked()
turn to the right { this.turnRight();
remember if the front is blocked boolean blocked = this.frontlsBlocked();
turn back to the left this.turnLeft();
return the answer return blocked;

}

%’_ Scope Is the region of the program in which a variable may be used.
P Examples:
.. public void method() public void method()
= { int tempVar = 0; { «statements»
c:s «statements» int tempVar = 0;
} «statements»
}
public void method() public void method()
{ if («booleanExpression») { «statements»
{ «statements» int tempVar = 0;
int tempVar = 0; while («booleanExpression»)
«Sstatements» { «statements»
} }
«Sstatements» «Sstatements»
} }

Rule: Use a variable from where it is declared to the end of the
smallest enclosing block (set of braces).

The general forms of while and if statements are

while («test») if («test») if («test»)
{ «statements» { «statements» { «statementsl»
} } } else
{ «statements2»
}

In each of these, «statements» can include while, if, and if-else

statements. Examples:

/** Pick up one thing (if there is a thing) [** Decide which way to turn based on whether
* from each intersection between this * a Thing is present and the number of Things
* robot and the nearest wall it is facing. */ | * being carried. */

public void pickThingsToWall() | public void turnRule()
{ while (this.frontlsClear()) { if (this.canPickThing())

5.3: Nesting Statements

{ this.move(); { /I There is a Thing here, so we’ll turn.
if (this.canPickThing()) if (this.countThingsinBackpack() > 0)
{ this.pickThing(); { this.turnRight();
} } else
} { this.turnLeft();
} }

> e ool

Problem: A robot is following a trail. It should perform the first action
In the following table that matches its current situation.

Front is blocked Turn around
Can pick a Thing Turn right
Left is blocked Turn left
Anything else Move

. i if (this.frontlsBlocked())
In what situations does the code { this.turnAround():

fragment on the right perform the }

wrong action? if (this.canPickThing())
{ this.turnRight();
}
if (this.leftlsBlocked())
{ this.turnLeft();
} else
{ this.move();

}

5.3.3: Cascading if Statements

if (this.frontlsBlocked())
{ this.turnAround();

} else
{ if (this.canPickThing())

{ this.turnRight(); rurnAround
} else

{ if (this.leftisBlocked())
{ this.turnLeft();
} else
{ this.move();

}

5.3.3: Cascading if Statements

true

The following code executes exactly one statement, the first statement
encountered when the code is read top-to-bottom.

frontls fake
Blocked

canPick fakse
Thing

turnRight

true leftls
Blocked

turnl eft move

} >

}

-2 Notice that each else clause has a single if statement. Java allows us to
GE, omit the braces and reformat it as follows to emphasize that only one
@ statement IS executed.
S
n if (this.frontlsBlocked()) if (this.frontlsBlocked())
‘= { this.turnAround(); { this.turnAround();
g’ } else } else if (this.canPickThing())
5 { if (this.canPickThing()) { this.turnRight();
v { this.turnRight(); } else if (this.leftlsBlocked())
8 } else { this.turnLeft();
8 { if (this.leftlsBlocked()) } else
.. { this.turnLeft(); { this.move();
) } else }
f;- { this.move();
}
}

}

So far, we can move a robot until it is blocked by a Wall:
while (this.frontlsClear())

;this.move();)—>] ‘

We can move a robot until it is on an intersection with a Thing:
while (!this.canPickThing())

{ this.move(); [
} >—9 0

But what If we want to move a robot until it i1s blocked or on an
Intersection with a Thing?

while (this.frontlsClear() OR !this.canPickThing())
{ this.move();

}

if (this.canPickThing() AND this.frontlsBlocked())
{ this.turnLeft();

} else
{ this.turnRight();

}

5.4.1: Combinging Boolean Expressions

The following rules define “legal” expressions:

1.Literal values such as true, false, and 50 are legal expressions.
The type of the expression is the type of the literal.

2.A variable is a legal expression. The type of the expression is the
type of the variable.

3.A method call whose arguments are legal expressions with the
appropriate types is a legal expression. The type of the expression
IS the return type of the method.

4.An operator whose operands are legal expressions with the
appropriate types is a legal expression. The type of the expression
IS given by the return type of the operator. Operators include &&,
||, !, the comparison operators, and the arithmetic operators.

Examples:
this.getAvenue() Rule 3

this.getAvenue() > 0 Rules, 3, 1, and 4
this.canPickThing() && this.frontlsBlocked() || this.getAvenue() > 0

5.4.1: The Form of Legal Expressions

5.4.1: Evaluating Boolean Expressions (1/2)

>[

boolean boolean int int
ghis-canPickThing() && @his-frontlsBlocked(S 11 €his-getAvenue() > @
false true 1 0
boolean
boolean boolean int int
ghis-canPickThing() && Ghis-frontlsBlocked() 11 ghis-getAvenue() > @
false true 1 0
true
boolean boolean
boolean boolean int
ghis-canPickThi ng() && @hls-frontlsBlockea JI 11 [Ehis. getAvenue() @
false true
false true

1 2
boolean

/ boolean boolean \
boolean boolean int
€his-canPickThing() && Ghis-frontlsBlocked(|| hIS getAvenue() @

false true
k false /
true
An incorrect “solution:”
boolean
/ boolean
boolean

boolean boolean int int

€his-canPickThing(9 && @his-frontlsBlocked(Q 11 €his-getAvenue(3 >@
false true 1

5.4.1: Evaluating Boolean Expressions (2/2)

0
true
N s /

false

5.4.1: Operator Precedence

Operator Precedence
method(parameters) 15
! 14
*I % 12
+ - 11
< > <= >= 0
== |= 8
&& 4
3

Simplifying Negations

Example Expression Simplification
I'karel.frontlsClear() karel.frontlsClear()
Ikarel.frontlsBlocked() karel.frontlsClear()
I(this.getAvenue() == 0) this.getAvenue() 1= 0
I(this.getAvenue() != 0) this.getAvenue() ==

De Morgan’s Laws
(b1 && b2) ='b1 || b2 (First Law)
(b1]| b2) = b1 && 'b2 (Second Law)
Example:
I(r.canPickThing() || (r.leftisBlocked() && r.rightlsBlocked()))
Ir.canPickThing() && !(r.leftlsBlocked() && r.rightisBlocked()

Ir.canPickThing() && (!r.leftlsBlocked() || !r.rightlsBlocked()
Ir.canPickThing() && (r.leftisClear() || r.rightlsClear()

5.4.2: Simplifying Boolean Expressions

Consider the following code fragment and situation:
if (this.frontlsClear() && this.thingOnSixthAvenue())
{ this.putAllThings();

}

o ™ 3 4 5 6

; A ®

Does the robot need to check for a thing on 6™ Avenue?

5.4.3: Short-Circuit Evaluation

In which of the following does the robot travel to 6™ Avenue?

if (this.frontlsClear() && this.thingsOnSixthAvenue())

{..
}

if (this.frontlsClear() || this.thingsOnSixthAvenue())

{..
}

5.4.3: Short-Circuit Evaluation
Q

o M 3 4 5 6

® b)"A

0 l—llz 3 4 5 6

a)o
c)o

5.5.1: Using a for Statement

In the figure below, the robot needs to move along exactly four sides.
On each side it needs to move exactly five times.

When the exact number of iterations is know before the loop begins,
use a for loop:

for(int «counter»=0; «counter»<«limit»; «counter»=«counter»+1)
{ «statements to repeat»

0 1 2 3 4 5
} 0>
A

——
Example: 1 | '_]
public void moveAroundSquare() .
{ for(int side = 0; side < 4; side = side + 1) []

{ this.moveAlongSide(); 3

this.turnRight();

) L]

private void moveAlongSide()
{ for(int moves = 0; moves < 5; moves = moves + 1)
{ this.move();

}
}

5.5.2: Using a do-while Loop

A do-while loop performs its test at the end of the loop, meaning the
body Is always executed at least once.

do
{ «statements to repeat»

} while («test»);

5.5.3: Using a while-true Loop

A while-true loop repeats until a break statement is executed.
Execution then continues with the statement immediately following the
loop. The break statement iIs always protected with an if statement that
determines whether the loop should end.

while (true)
{ «optional statementsl»

if (<testl») { break; }
«optional statements2»

if (<testN») { break; }
«optional statementsN+1»

}

5.5.3: Using a while-true Loop

Consider the fence-post problem. 1 2 3

We solved it earlier with the @ @ @—@

following method:
public void clearThingsToWall()
{ while (this.frontlsClear())) ‘ ‘ ‘
{ this.pickThing();
this.move();

}
this.pickThing();

}

Using a while-true loop, this could be written as follows:
public void clearThingsToWall()
{ while (true)
{ this.pickThing();
if (this.frontlsBlocked()) { break; }
this.move();

}
}

whilg'(true)

{ this.pickThing();
1T (this.frontlsBlocked())
this.move();

}

break;

whilg (true)
{ iIs.pickThing(Q);
(this.frontlsBlocked())
this.move();

break;

ue)
_NickThingQ;
iIs.frontlsBlocked())

5.3.3: Using a while-true Loop

break;

break;

5.5.4: Choosing an Appropriate Loop

If...

Then...

a parameter refers to the number of times the
loop will execute and the value is not needed
for other purposes...

use a count-down loop
or a for statement.

the number of times the loop will execute is
known before the loop is entered...

use a for statement.

the loop might execute zero times...

use a while statement.

the loop has a single test that is relatively
simple that appears at the top of the loop...

use a while statement.

the loop always executes at least once...

use a do-while
Statement.

the loop executes an extra “half” time for a
fence-post problem...

use a while-true loop.

the loop has multiple exit tests or a complex
test that can be more easily understood as
separate tests...

use a while-true loop.

Write a HistogramBot which will turn piles of Things (the data) into a
histogram (bar chart). The data is always on Avenue 0, starting with
Street 1. The end of the data is signaled with a wall, as shown in the
Initial situation. The result of calling the robot’s makeChart method is
shown in the final situation. It is not known whether the robot already

y: Histograms

>, has things in its backpack.

Initial Situation

=
= 0 1 2 3 4 5 i] 1 2 3 4 5 B
= . W W . P UD WD WD WD WD WD E
n ”
o PEEaeeenl JUN N) NN
7] @ 0@
S PpEEaeeenl JUIC K R N R
" ’asssani X X X111
111111 (X XX X11
111111 X XL 1L
111111 Eq.p.l.lllll
TII11L e’
? Faeaeeenl

7

Final Situation

import becker.robots.*;

[** Make a histogram (bar chart) from data (things) on Avenue O.

*
* @author Byron Weber Becker */
public class HistogramMain

{

public static void main(String[] args)

{

/[a file that isn't found will result in a file chooser being displayed
City chart = new City(");
chart.showThingCounts(true);

HistogramBot histo = new HistogramBot(chart);

Case Study: main Method

histo.makeChart();

}
}

import becker.robots.*;

/** A kind of robot that will make a histogram (bar chart) from data (things) on Avenue 0.

* The end of the data is marked with a wall.
*

* @author Byron Weber Becker */
public class HistogramBot extends Robot

{

[** Create a HistogramBot at the origin of the given city, facing south.
* @param aCity The city containing the data for the histogram. */

public HistogramBot(City aCity)
{ super(aCity, 0, 0, Direction.SOUTH);

}

[** Make the histogram from the data supplied on Avenue 0. */

public void makeChart()

{
}

Case Study: Beginning HistogramBot

import becker.robots.*;

public class HistogramBot extends Robot

{
public HistogramBot(City aCity)... // done

[** Make the histogram from the data supplied on Avenue 0. */

public void makeChart()
{
while (this.frontlsClear())
{ this.move();
this.makeBar();

}
}

[** Make one bar of the histogram. */
protected void makeBar()

{
}

Case Study: makeChart

Case Study: makeBar

import becker.robots.*;

public class HistogramBot extends Robot
{ public HistogramBot(City aCity)... // done
public void makeChart()... // done

[** Make one bar of the histogram. */

protected void makeBar()

{ int numPoints = this.pickAndCountThings();
if (numPoints > 0)
{ this.distributePoints(numPoints);

}
}

[** Pick up and count all of the things on this intersection.
* @return The number of things picked up. */

private int pickAndCountThings()
{ return 0;

}

/** Distribute num data items (Things), one per intersection. */
protected void distributePoints(int num)

{
}

Case Study: pickAndCountThings

import becker.robots.*;

public class HistogramBot extends Robot

{ public HistogramBot(City aCity)... // done
public void makeChart()... // done
protected void makeBar()... // done

/** Pick up and count all of the things on this intersection.
* @return The number of things picked up. */

private int pickAndCountThings()
{ int numThings = 0;
while (this.canPickThing())
{ this.pickThing();
numThings = numThings + 1;
}

return numThings;

}

[** Distribute num data items (Things), one per intersection. */
protected void distributePoints(int num)

{
}

Case Study: distributePoints

import becker.robots.*;
public class HistogramBot extends Robot

{ public HistogramBot(City aCity)... /I done
public void makeChart()... / done
protected void makeBar()... / done
private int pickAndCountThings()... /I done

[** Distribute num data items (Things), one per intersection. */
protected void distributePoints(int num)
{ this.turnLeft();

this.putDown(num);

this.turnAround();

this.move(num);

this.turnLeft();

}

/** Put down num things, one per intersection. */
private void putDown(int num)

{
}

[** Move howFar times */
private void move(int howFar)...
private void turnAround()...

import becker.robots.*;
public class HistogramBot extends Robot

{ public HistogramBot(City aCity)... /I done
public void makeChart()... /I done
protected void makeBar()... / done
private int pickAndCountThings()... /I done
protected void distributePoints(int num) / done

[** Put down num things, one per intersection. */
private void putDown(int num)
{ for(inti=0;i<num;i=i+1)
{ this.putThing();
this.move();

}
}

[** Move howFar times */

private void move(int howFar)...

{ for(inti=0;i<howFar;i=i+1)
{ this.move();
}

}

private void turnAround()
{ this.turnLeft(); this.turnLeft();

}

putdown and move

Case Study

The style of your code has a large impact on its understandability.

Three important guidelines:

o Use stepwise refinement to avoid having deeply nested
statements or long sequences of statements.

e Use positively stated, simple Boolean expressions.
Transform complex Boolean expressions with:

5.6: Coding with Style

e Predicates to encapsulate complex expressions
e Test reversal

e Top factoring

e Bottom factoring

e Indent your code so the visual structure reflects the logical
structure.

5.6.2: Positively Stated Simple Expressions

Use predicates:

Instead of... Use...
while (!this.frontlsClear()) while (this.frontlsBlocked())
{ ... { ...
} }
if (this.getDirection() == if (this.isFacingSouth())
Direction.SOUTH)) [{ ...
{ ... }
} or
if (this.isFacing(Direction.SOUTH))
{ ...
}
if (this.frontlsBlocked() && if (this.completelyBlocked())
this.leftisBlocked() && { ...
}

this.rightlsBlocked())

o

5.6.2: Positively Stated Simple Expressions

Use test reversal:
Instead of...

Use...

if (Ithis.frontlsClear())
{ this.turnLeft();

} else

{ this.move();

}

if (this.frontlsClear())
{ this.move();

} else
{ this.turnLeft();

}

if (this.canPickThing())
{ // do nothing

} else

{ this.turnLeft();

}

if (1this.canPickThing())
{ this.turnLeft();

} else

{ // do nothing

}

or, better still
if (this.canPickThing())
{ this.turnLeft();

}

Use bottom factoring:

Instead of... Use...

if (this.canPickThing()) if (this.canPickThing())

{ this.pickThing(); { this.pickThing();
this.turnAround();

} else } else

{ this.putThing(); { this.putThing();
this.turnAround();

} }

this.turnAround();

5.6.2: Positively Stated Simple Expressions

5.6.2: Positively Stated Simple Expressions

Use top factoring:
Instead of...

Use...

if (this.canPickThing())

{ this.turnAround();
this.pickThing();

} else

{ this.turnAround();
this.putThing();

}

this.turnAround();
if (this.canPickThing())

{
this.pickThing();
} else

{
}

this.putThing();

if (this.isFacingNorth())

{ this.turnAround();
this.pickThing();

} else

{ this.turnAround();
this.putThing();

}

/| WRONG!
this.turnAround();
if (this.isFacingNorth())

{
this.pickThing();
} else

{
}

this.putThing();

Application: Using Loops to Draw (1/3)

import javax.swing.*;
import java.awt.*;

[** Create a component that paints our "art".
* @author Byron Weber Becker */

public class ArtComponent extends JComponent
{
public ArtComponent()
{ super();
this.setPreferredSize(new Dimension(300,300));

}

[** Paint the component with our "art". */
public void paintComponent(Graphics g)
{ super.paintComponent(g);

/l Standard stuff to scale the image.
Graphics2D g2 = (Graphics2D) g;
g2.scale(this.getWidth()/11, this.getHeight()/11);

Add this

component to
the content pane
of a JPanel.

Al (o] x|

g2.setStroke(new BasicStroke(1.0F/this.getWidth()));

/I draw our "art"

g.drawLine(1, 1, 10, 10);

Application: Using Loops to Draw (2/3)

public class ArtComponent extends
JComponent

{
public ArtComponent()...

[** Paint the component with our "art". */
public void paintComponent(Graphics g)
{ super.paintComponent(g);

// Standard stuff to scale the image.

Graphics2D g2 = (Graphics2D) g;
g2.scale(this.getWidth()/11, this.getHeight()/11);
g2.setStroke(new BasicStroke(1.0F/this.getWidth()));

/[draw our "art"

for (int line = 1; line <= 10; line = line + 1)
{ g.drawLine(1, 1, 10, line);

}

& -0l x|

Application: Using Loops to Draw (3/3)

public class ArtComponent extends JComponent
{

public void paintComponent(Graphics g)
{

/I draw our "art"

for (int left = 1; left <= 5; left = left + 1)

{ for (int right = 1; right <= 10; right = right + 1)
{ g.drawLine(1, left, 10, right);
}

}

}

-

i (0] x]

5.8.1: The Loop-and-a-Half Pattern

Name: Loop-and-a-Half

Context: A loop is used for a variation of the fence-post problem
where some actions (fence posts) must be performed one more time
than other actions (fence sections).

Solution: Use a while loop with an extra fence post action afterwards:
while («booleanExpression»)

{ «FencePost actions»
«FenceSection actions»

}

«FencePost actions»

Alternatively, use a while-true loop:
while (true)
{ «fencePost actions»

if (l«booleanExpression») { break; }
«fenceSection actions»

}
Conseguences: Some actions are repeated an extra time.

Related Patterns: Variation of Zero or More Times.

5.8.2: The Temporary Variable Pattern

Name: Temporary Variable
Context: A value must be stored for later use within the same method.

Solution: Use a temporary variable. Declare with
«type» «name» = «initialValue»;

Using «name» causes the variable’s value to be used in the expression.

An example:
public int numBlockedDirections()
{ int numWalls = 0;
for (int turns = 0; turns < 4; turns = turns + 1)
{ if (this.frontlsClear())
{ numWalls = numWalls + 1;

}
this.turnLeft();

}

return numWalls;

}

Consequences: The variable will remember a value within the
smallest enclosing block.

Related Patterns: Always occurs within a method pattern.

5.8.3: The Counting Pattern

Name: Counting

Context: The number of events must be counted (number of moves,
times something is picked up, etc).

Solution: Increment a temporary variable each time the event
happens.

int «xcounter» = 0;
while ()
{ «statements»
«counter» = «counter» + 1;

}
Variations of this pattern may increment «counter» only if a certain
condition is true or may use a different looping strategy.

Conseguences. «counter» records the number of events since it was
Initialized.

Related Patterns: This pattern uses the Temporary Variable pattern
plus a looping pattern such as Zero or More Times.

5.8.4: The Query Pattern

Name: Query

Context: A calculation that yields a single value is required,
particularly if the calculation requires several steps, is complicated, the
program’s readability is improved by giving it a name, or the
calculation is used more than once in the program.

Solution: Write a method with a return value:
«accessModifier» «returnType» «queryName»(«optParams»)
{ «optional statements»

«returnType» answer = «expression»;
«optional statements»

return answer;

}
Consequences: Queries make the code easier to understand.

Related Patterns: This is a specialization of other method creation
patterns such as Parameterless Command. The Simple Predicate and
Predicate patterns are specializations of this pattern.

5.8.5: The Predicate Pattern

Name: Predicate

Context: A Boolean expression is hard to read or the result can’t be
calculated with a single expression.

Solution: Place the expression and any extra processing into a
specialized version of the Query pattern where the return type is

boolean. For example:
public boolean rightisBlocked()
{ this.turnRight();
boolean answer = this.frontlsBlocked();
this.turnLeft();
return answer;

}

Conseqguences. The processing required is encapsulated in a reusable
query. Appropriately named, code becomes easier to understand.

Related Patterns: This pattern is a specialization of the Query
pattern. It is often used in the test for the Once or Not At All, Zero or
More Times, and Either This or That patterns. The Simple Predicate
pattern studied earlier is a simplified version of this pattern.

5.8.6: The Cascading-if Pattern

Name: Cascading-if
Context: One of several groups of statements must be executed.

Solution: Order the tests from the most specific to the most general,

pairing each test with the appropriate actions.
if («testl»)
{ «statementGroupl»
} else if («test2»)
{ «statementGroup2»

} else if («testN»)
{ «statementGroupN»

} else
{ «defaultStatements»

}

Conseqguences: The tests are executed In order from 1 to N. The first
one that returns true will cause the associated statement group to be
executed.

Related Patterns: Once or Not At All and Either This or That are
simpler (and more common) versions of this pattern.

5.8.7: The Counted Loop Pattern

Name: Counted Loop

Context: A group of statements must be executed a specific number
of times, a number known before execution of the loop begins.

Solution: Use a for statement:
int howFar = this.getAvenue();
for (inti=0;i<howFar;i=i+1)
{ this.move();

}

In general,
for (int «<counter» = 0; «counter» < «limit»;
«counter» = «counter» + 1)
{ «statements»

}
Consequences: The «statements» are executed «limit» times.

Related Patterns: This pattern is a specialization of the Zero or More
Times pattern.

Concept Map

5.9

switch
statement

is similar to cascaded if

may Pe?
- else clause De Morgan's
if may have an
L
statements aws
be
O bé G
¢ ke
2 Ry
may be && and | |
Boolean combined with

expressions ~
short-circuit

evaluation

local
variable

may be used elsewhere
within the smallest enclosing

assighment
statement

temporaty
variable

can be changed
with an

Four Step
Process

do-while

loops

break
statement

infinite
execution

) &9@ Inc] ude the

I,
1;/?‘?
for loop

fence post
problem

4.9: Summary

We have learned:

e how to avoid common looping errors such as the fence-post
problem and how to use a four-step process to write loops.

e how to use temporary variables to remember information for later
use within a method, including tasks such as counting, storing the
result of a query, and writing a query.

e how statements such as if and while can be nested inside each
other.

e how nesting if-else statements in a particular pattern lets us choose
exactly one group of statements to execute.

e how to combine, evaluate, and simplify Boolean expressions.

e how to use several looping variations including the for statement,
do-while statement, and while-true loops.

e how to use positively stated simple expressions to make our code
more readable.

